The insights derived from the analysis of your data model make your Adobe Real-Time CDP data more accessible, understandable, and impactful for decision-making.
Understand your profile insights by accessing the SQL that powers them, then generate your own insights to further explore your customers and their consumer experiences that make up your profiles. Transform your raw data into new actionable insights by using the existing Real-Time CDP data model SQL as inspiration to create queries for your unique business needs.
See the View SQL documentation for more information on how to adapt your insights’ SQL directly through the Platform UI.
The following insights are all available for you to use as part of the Profiles dashboard or a custom user-defined dashboard. See the customization overview for instructions on how to customize your dashboard or create and edit new widgets in the widget library and user-defined dashboard.
Questions answered by this insight:
SELECT Sum(overlap_col1) overlap_col1,
Sum(overlap_col2) overlap_col2,
Sum(overlap_count) Overlap_count
FROM
(SELECT 0 overlap_col1,
0 overlap_col2,
sum(count_of_overlap)Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
AND ((qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=1333234510
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=1559754729)
OR (qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment1=1559754729
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.segment2=1333234510))
UNION ALL SELECT sum(count_of_profiles) overlap_col1,
0 overlap_col2,
0 overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
LEFT JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 1333234510
UNION ALL SELECT 0 overlap_col1,
sum(count_of_profiles) overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id = qsaccel.profile_agg.adwh_dim_segments.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_segments.segment_Id = 1559754729 ) a;
See the Audience overlap by merge policy widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT source_segment_name,
source_segment_id,
overlap_segment_name,
overlap_segment_id,
max(source_segment_audience_count) source_segment_audience_count,
max(overlap_segment_audience_count) overlap_segment_audience_count,
max(overlap_audience_count) overlap_audience_count,
CASE
WHEN (max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) > 0 THEN (cast(max(overlap_audience_count) AS DECIMAL(18, 2)) / cast((max(source_segment_audience_count) + max(overlap_segment_audience_count) - max(overlap_audience_count)) AS DECIMAL(18, 2))) * 100::DECIMAL(9, 2)
ELSE 100.00
END overlapping_percentage
FROM
(SELECT adwh_fact_profile_overlap_of_segments.Segment1 source_segment_id,
adwh_fact_profile_overlap_of_segments.Segment2 overlap_segment_id,
Sum(count_of_overlap) overlap_audience_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment2 ,
qsaccel.profile_agg.adwh_fact_profile_overlap_of_segments.Segment1) a
INNER JOIN
(SELECT sum(count_of_profiles) source_segment_audience_count,
adwh_dim_segments.segment_name source_segment_name,
adwh_fact_profile_by_segment_trendlines.merge_policy_id,
adwh_fact_profile_by_segment_trendlines.segment_Id segment1
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_dim_segments.segment_id = qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) b ON a.source_segment_id = b.segment1
INNER JOIN
(SELECT sum(count_of_profiles) overlap_segment_audience_count,
adwh_dim_segments.segment_name overlap_segment_name,
adwh_fact_profile_by_segment_trendlines.merge_policy_id,
adwh_fact_profile_by_segment_trendlines.segment_Id segment2
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
JOIN qsaccel.profile_agg.adwh_dim_segments ON adwh_dim_segments.segment_id = adwh_fact_profile_by_segment_trendlines.segment_Id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_dim_segments.segment_name,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id,
qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id) c ON a.overlap_segment_id = c.segment2
GROUP BY source_segment_name,
source_segment_id,
overlap_segment_name,
overlap_segment_id
ORDER BY overlapping_percentage DESC
LIMIT 5;
See the Audience overlap report widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT count(DISTINCT a.segment_id) count_of_segments
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines a
JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) b ON a.merge_policy_id= b.merge_policy_id
AND a.date_key = b.last_process_date
WHERE a.merge_policy_id= 2027892989;
See the Audiences widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT COUNT(DISTINCT (y.segment_id)) AS count_mapped_segments,
COUNT(DISTINCT (x.segment_id)) - COUNT(DISTINCT (y.segment_id)) AS count_unmapped_segments,
COUNT(DISTINCT (x.segment_id)) AS total_segments
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines x
LEFT JOIN qsaccel.profile_agg.adwh_dim_br_segment_destinations y ON x.segment_id = y.segment_id
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) z ON x.merge_policy_id = z.merge_policy_id
AND x.date_key = z.last_process_date
WHERE x.merge_policy_id = 2027892989;
See the Audiences mapped to destination status widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key,
qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
qsaccel.profile_agg.adwh_dim_segments.segment,
qsaccel.profile_agg.adwh_dim_segments.segment_name,
sum(qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.count_of_profiles)count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_segments ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.segment_id = qsaccel.profile_agg.adwh_dim_segments.segment_id
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id=adwh_dim_merge_policies.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.merge_policy_id= 2027892989
GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_segment_trendlines.date_key,
qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
qsaccel.profile_agg.adwh_dim_segments.segment,
qsaccel.profile_agg.adwh_dim_segments.segment_name
ORDER BY count_of_profiles DESC
LIMIT 20;
See the Audiences size widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT b.model_name,
b.model_type,
CASE
WHEN score >= 0
AND score < 25 THEN 'LOW'
WHEN score >= 25
AND score < 75 THEN 'MEDIUM'
WHEN score >= 75
AND score <= 100 THEN 'HIGH'
END bucket_name,
CASE
WHEN score >= 0
AND score < 5 THEN '02.50'
WHEN score >= 5
AND score < 10 THEN '07.50'
WHEN score >= 10
AND score < 15 THEN '12.50'
WHEN score >= 15
AND score < 20 THEN '17.50'
WHEN score >= 20
AND score < 25 THEN '22.50'
WHEN score >= 25
AND score < 30 THEN '27.50'
WHEN score >= 30
AND score < 35 THEN '32.50'
WHEN score >= 35
AND score < 40 THEN '37.50'
WHEN score >= 40
AND score < 45 THEN '42.50'
WHEN score >= 45
AND score < 50 THEN '47.50'
WHEN score >= 50
AND score < 55 THEN '52.50'
WHEN score >= 55
AND score < 60 THEN '57.50'
WHEN score >= 60
AND score < 65 THEN '62.50'
WHEN score >= 65
AND score < 70 THEN '67.50'
WHEN score >= 70
AND score < 75 THEN '72.50'
WHEN score >= 75
AND score < 80 THEN '77.50'
WHEN score >= 80
AND score < 85 THEN '82.50'
WHEN score >= 85
AND score < 90 THEN '87.50'
WHEN score >= 90
AND score < 95 THEN '92.50'
WHEN score >= 95
AND score <= 100 THEN '97.50'
END score_bins,
Sum(CASE
WHEN score >= 0
AND score < 25 THEN count_of_profiles
WHEN score >= 25
AND score < 75 THEN count_of_profiles
WHEN score >= 75
AND score <= 100 THEN count_of_profiles
END) count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_ai_models a
JOIN qsaccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id = b.merge_policy_id
AND a.model_id = b.model_id
WHERE a.merge_policy_id = 2027892989
AND a.model_id = 1829081696
AND score_date =
(SELECT Max(score_date)
FROM qsaccel.profile_agg.adwh_fact_profile_ai_models d
WHERE d.model_id = a.model_id) GROUP BY b.model_name,
model_type,
CASE
WHEN score >= 0
AND score < 25 THEN 'LOW'
WHEN score >= 25
AND score < 75 THEN 'MEDIUM'
WHEN score >= 75
AND score <= 100 THEN 'HIGH'
END,
CASE
WHEN score >= 0
AND score < 5 THEN '02.50'
WHEN score >= 5
AND score < 10 THEN '07.50'
WHEN score >= 10
AND score < 15 THEN '12.50'
WHEN score >= 15
AND score < 20 THEN '17.50'
WHEN score >= 20
AND score < 25 THEN '22.50'
WHEN score >= 25
AND score < 30 THEN '27.50'
WHEN score >= 30
AND score < 35 THEN '32.50'
WHEN score >= 35
AND score < 40 THEN '37.50'
WHEN score >= 40
AND score < 45 THEN '42.50'
WHEN score >= 45
AND score < 50 THEN '47.50'
WHEN score >= 50
AND score < 55 THEN '52.50'
WHEN score >= 55
AND score < 60 THEN '57.50'
WHEN score >= 60
AND score < 65 THEN '62.50'
WHEN score >= 65
AND score < 70 THEN '67.50'
WHEN score >= 70
AND score < 75 THEN '72.50'
WHEN score >= 75
AND score < 80 THEN '77.50'
WHEN score >= 80
AND score < 85 THEN '82.50'
WHEN score >= 85
AND score < 90 THEN '87.50'
WHEN score >= 90
AND score < 95 THEN '92.50'
WHEN score >= 95
AND score <= 100 THEN '97.50'
END;
See the Customer AI distribution of scores widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT model_name,
model_type,
CASE
WHEN score BETWEEN 0 AND 24 THEN 'LOW'
WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
END score_buckets,
sum(count_of_profiles) count_of_profiles
FROM QSAccel.profile_agg.adwh_fact_profile_ai_models a
JOIN QSAccel.profile_agg.adwh_dim_ai_models b ON a.merge_policy_id=b.merge_policy_id
AND a.model_id=b.model_id
WHERE a.merge_policy_id=2027892989
AND a.model_id =1829081696
AND score_date=
(SELECT max(score_date)
FROM QSAccel.profile_agg.adwh_fact_profile_ai_models d
WHERE d.model_id=a.model_id)
GROUP BY model_name,
model_type,
CASE
WHEN score BETWEEN 0 AND 24 THEN 'LOW'
WHEN score BETWEEN 25 AND 74 THEN 'MEDIUM'
WHEN score BETWEEN 75 AND 100 THEN 'HIGH'
END;
See the Customer AI scoring summary widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT Sum(overlap_col1) overlap_col1,
Sum(overlap_col2) overlap_col2,
coalesce(Sum(overlap_count), 0) overlap_count
FROM
(SELECT 0 overlap_col1,
0 overlap_col2,
Sum(count_of_profiles) overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace
WHERE qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_fact_profile_overlap_of_namespace.overlap_id IN
(SELECT a.overlap_id
FROM
(SELECT qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id overlap_id,
count(*) cnt_num
FROM qsaccel.profile_agg.adwh_dim_overlap_namespaces
WHERE qsaccel.profile_agg.adwh_dim_overlap_namespaces.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_namespaces in ('avid',
'crmid')
GROUP BY qsaccel.profile_agg.adwh_dim_overlap_namespaces.overlap_id)a
WHERE a.cnt_num>1 )
UNION ALL SELECT count_of_profiles overlap_col1,
0 overlap_col2,
0 overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'avid'
UNION ALL SELECT 0 overlap_col1,
count_of_profiles overlap_col2,
0 Overlap_count
FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
AND qsaccel.profile_agg.adwh_dim_namespaces.namespace_description = 'crmid' )a;
See the Identity overlap widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
The SQl that generates these insights is as follows:
SELECT qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
sum(qsaccel.profile_agg.adwh_fact_profile.count_of_profiles) CNT
FROM qsaccel.profile_agg.adwh_fact_profile
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_id=adwh_fact_profile.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile.date_key='2024-01-10'
AND qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
GROUP BY qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name;
Complete information on the appearance and functionality of this insight can be found in the Profile count widget guide.
See the Profile count widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT (sum(count_of_profiles) - sum(count_of_profiles_days_ago)) profiles_added
FROM
(SELECT sum(qsaccel.profile_agg.adwh_fact_profile.count_of_profiles) count_of_profiles,
0 count_of_profiles_days_ago
FROM qsaccel.profile_agg.adwh_fact_profile
WHERE qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile.date_key = '2024-01-10'
UNION ALL SELECT 0 count_of_profiles,
CASE
WHEN sum(cntondatediff) =0 THEN sum(cntmin)
ELSE sum(cntondatediff)
END AS count_of_profiles_days_ago
FROM
(SELECT coalesce(sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles), 0) cntondatediff,
0 cntmin
FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id =2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key =dateadd(DAY, - 30, '2024-01-10')
UNION ALL SELECT 0 cntondatediff,
sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles) countMin
FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key =
(SELECT min(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key) col
FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id =2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key >= dateadd(DAY, - 30, '2024-01-10')
AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles IS NOT NULL) )b) a;
See the Profile count change widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT date_key,
profiles_count_change
FROM
(SELECT rn_num,
date_key,
(count_of_profiles-lag(count_of_profiles, 1, 0) over(
ORDER BY date_key))profiles_count_change
FROM
(SELECT qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key,
sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles) count_of_profiles,
row_number() OVER (
ORDER BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key) rn_num
FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key >=dateadd(DAY, - 30 -1, '2024-01-10')
GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key)a)b
WHERE rn_num > 1;
See the Profile count change trend widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT date_key,
sum(count_of_profiles) AS count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines x
INNER JOIN
(SELECT MAX(process_date) last_process_date,
merge_policy_id
FROM qsaccel.profile_agg.adwh_lkup_process_delta_log
WHERE process_name = 'FACT_TABLES_PROCESSING'
AND process_status = 'SUCCESSFUL'
GROUP BY merge_policy_id) y ON x.merge_policy_id = y.merge_policy_id
WHERE date_key >= dateadd(DAY, -365, y.last_process_date)
AND x.merge_policy_id = 2027892989
GROUP BY date_key;
See the Profile count trend widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
sum(qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.count_of_profiles) count_of_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id,
qsaccel.profile_agg.adwh_dim_namespaces.namespace_description
ORDER BY count_of_profiles DESC;
See the Profiles by identity widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT date_key,
profiles_count_change
FROM
(SELECT rn_num,
date_key,
(count_of_profiles-lag(count_of_profiles, 1, 0) over(
ORDER BY date_key))profiles_count_change
FROM
(SELECT qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key,
sum(qsaccel.profile_agg.adwh_fact_profile_by_trendlines.count_of_profiles) count_of_profiles,
row_number() OVER (
ORDER BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key) rn_num
FROM qsaccel.profile_agg.adwh_fact_profile_by_trendlines
WHERE qsaccel.profile_agg.adwh_fact_profile_by_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key >=dateadd(DAY, - 30 -1, '2024-01-10')
GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_trendlines.date_key)a)b
WHERE rn_num > 1;
See the Profiles count change trend widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT date_key,
namespace_description,
profiles_count_change
FROM
(SELECT rn_num,
date_key,
namespace_description,
(count_of_profiles - lag(count_of_profiles, 1, 0) over(PARTITION BY namespace_description
ORDER BY date_key)) profiles_count_change
FROM
(SELECT qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
sum(qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.count_of_profiles) count_of_profiles,
row_number() OVER (PARTITION BY qsaccel.profile_agg.adwh_dim_namespaces.namespace_description
ORDER BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key) rn_num
FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id= -1042977439
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key >= dateadd(DAY, - 30 -1, '2024-01-10')
GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
adwh_dim_namespaces.namespace_description)a)b
WHERE rn_num > 1;
See the Profiles count change trend by identity widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
sum(qsaccel.profile_agg.adwh_fact_profile.count_of_Single_Identity_profiles) CNT
FROM qsaccel.profile_agg.adwh_fact_profile
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_id=adwh_fact_profile.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile.date_key='2024-01-10'
AND qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
GROUP BY qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name;
See the Single identity profiles widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT qsaccel.profile_agg.adwh_dim_namespaces.namespace_description,
sum(qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.count_of_Single_Identity_profiles) count_of_Single_Identity_profiles
FROM qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_namespaces ON qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.namespace_id = qsaccel.profile_agg.adwh_dim_namespaces.namespace_id
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = qsaccel.profile_agg.adwh_dim_namespaces.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id = 2027892989
AND qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key = '2024-01-10'
GROUP BY qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.date_key,
qsaccel.profile_agg.adwh_fact_profile_by_namespace_trendlines.merge_policy_id,
qsaccel.profile_agg.adwh_dim_namespaces.namespace_description;
See the Single identity profiles by identity widget documentation for information on the appearance and functionality of this insight.
Questions answered by this insight:
SELECT qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name,
sum(qsaccel.profile_agg.adwh_fact_profile.count_of_Orphan_profiles) CNT
FROM qsaccel.profile_agg.adwh_fact_profile
LEFT OUTER JOIN qsaccel.profile_agg.adwh_dim_merge_policies ON qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_id=adwh_fact_profile.merge_policy_id
WHERE qsaccel.profile_agg.adwh_fact_profile.date_key='2024-01-10'
AND qsaccel.profile_agg.adwh_fact_profile.merge_policy_id = 2027892989
GROUP BY qsaccel.profile_agg.adwh_dim_merge_policies.merge_policy_name;
See the Unsegmented profiles widget documentation for information on the appearance and functionality of this insight.
By reading this document, you now understand the SQL that generates dashboard insights and what common questions this analysis solves. You can now edit and iterate on the SQL to generate your own insights.
See the View SQL documentation for more information on how to adapt your insights’ SQL directly through the PLatform UI.
You can also read and understand the SQL that generates insights for the Audiences, Account Profiles, and Destinations dashboards.